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(Time-dependant) classical mechanics on Q, an n-dimensional
configuration space, is geometrised on T*Q or T*/ x T*Q for | a

time intervall and ¢ : | — T*Q as follows:

Hamilton’s equations

o _ d(paou(t) O d(q® o (1)

poa(0(e) = FPEE) T e (e)) = T
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(Time-dependant) classical mechanics on Q, an n-dimensional
configuration space, is geometrised on T*Q or T*/ x T*Q for | a
time intervall and ¢ : | — T*Q as follows:

Hamilton’s equations

ou d(pa 0 (1) OH d(q° o ¥(1))
oa () = SR T (e () = TEEEED,

Equivalently for W = (id;, H,v) : | — T*(I x Q):

d .
(w )<dt) _I UJ\IJ(t) = 7dH\U(t) with H = H*p

Note: Xyow = —dH.
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Classical field theory
Multis

Let ¥ be a k-dimensional manifold with a volume form vol/* and a
dual k-vector field VZ, andm: E=YX x Q— X.

We call ¢ : ¥ — Q a “field” and L: J}(7) — R a “Lagrange
function™.
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Classical field theory

Let ¥ be a k-dimensional manifold with a volume form vol/* and a
dual k-vector field VZ, andm: E=YX x Q— X.

We call ¢ : ¥ — Q a “field” and L: J}(7) — R a “Lagrange
function™.

Lagrangean field theory

Extrema of
o [ LGN (@)vol®
by
are the solutions of the field theory, they fulfill the Euler-Lagrange
equations.
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If L is regular, the higher dimensional Legrendre transformation
yields equations on the analogues of T*(/ x Q) and /| x T*Q:

M(m) = NT*Z D (T*Q @ NI T*L) resp.
P(r) = T*Q @ N1T*L,

both as vector bundles over E = ¥ x Q for maps ¥V : ¥ — M(m)

resp. W : ¥ — P(n).

Coordinates for M() are (x*, q%, p4, p); p being absent on P(7).
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Classical field theorv
plectic s

Hamilton-Volterra equations

Ve {l,....k} and Va e {1,...,n},

OH g0y _ = Oph 0 B)(x)
8qa (\U(X)) - ; aX” ’
oH =~ d(q? o U)(x)
o V) = =

Time derivates are replaced by partials in coordinate directions x*
of X, replacing /.
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With W = (#,¥) : ¥ — M(n) and H = H — p, we have
equivalently:

(w*)('YZ) | w\u(t) == _dH\U(t) Wlth H = H—p

We can now formulate for a multivector field Xy on M(7) the
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With W = (#,¥) : ¥ — M(n) and H = H — p, we have
equivalently:

(w*)('YZ) | w\u(t) == _dH\U(t) Wlth H = H—p

We can now formulate for a multivector field Xy on M(7) the

Hamilton-De Donder-Weyl (HDW) equations:
XHJw = —dH.

Solving them is not enough for finding the section W or the field ¢,
since if k > 1 going from HDW to a map is an extra step (that is
trivially assured by the existence of flows of vector fields, as
opposed to multivector fields)!
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Multisymplectic manifolds

A “multisymplectic” manifold (M, w) is a pair, where M is a
manifold, k > 1 and w € Qk*1(M) is a closed differential form
satisfying the following non-degeneracy condition: The map

Lew : TM — /\kT*M, Vi LW = Viw

is injective. For fixed degree k + 1 of the form such manifolds are
also called “k-plectic”.
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Multisymplectic manifolds

symplectic (aka 1-plectic) manifolds
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Multisymplectic manifolds
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Multisymplectic manifolds

s galore

symplectic (aka 1-plectic) manifolds

multicotangent bundles AK T*E and certain subbundles
dual jet bundles

manifolds with volume forms

real Calabi-Yau manifolds

manifolds with Go-structures

hyperkahler manifolds

semisimple Lie groups with the Cartan three-form
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Note that for j > 1 typically the following map is neither injective
nor surjective:

tew :NTM = NFYITM, unve= (uAv)iw.

Nevertheless the HDW equation

Xiw=—da,

whose solutions are couples (X, a) with X € X"~k(M), a
multivector field, and a € Q%(M), a k-form, are central for
multisymplectic geometry!
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Symmetry groups

2dlr Case

Note that there is only one GL(2n,RR)-orbit of nondegenerate
2-forms on R2". This is no longer true for higher degree!
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Symmetry groups

ar case

Note that there is only one GL(2n,RR)-orbit of nondegenerate
2-forms on R2". This is no longer true for higher degree!

Example: linear 2-plectic forms on R®

sum of volumes on R® = R3 x R3 with stabilizer group
isomorphic to SL(3,R) x SL(3,R)
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Symmetry groups

ar case

Note that there is only one GL(2n,RR)-orbit of nondegenerate
2-forms on R2". This is no longer true for higher degree!

Example: linear 2-plectic forms on R®

sum of volumes on R® = R3 x R3 with stabilizer group
isomorphic to SL(3,R) x SL(3,R)

canonical multisymplectic structure on R® = A?(R3)* @ R3
and

wlaedu,fov,ydw)=0a(v,w)— B(u,w)+~v(u,v)

with a “parabolic stabilizer”
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Symmetry groups

ar case

Note that there is only one GL(2n,RR)-orbit of nondegenerate
2-forms on R2". This is no longer true for higher degree!

Example: linear 2-plectic forms on R®
sum of volumes on R® = R3 x R3 with stabilizer group
isomorphic to SL(3,R) x SL(3,R)
canonical multisymplectic structure on R® = A?(R3)* @ R3
and

wlaedu,fov,ydw)=0a(v,w)— B(u,w)+~v(u,v)

with a “parabolic stabilizer”

R = C3 as a real vector space; the real part of a complex
volume form on C3 is a nondenerate 3-form with SL(3,C) as
stabilizer.
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Symmetry groups

We have the following corresponding manifolds with their
respective multisymplectic diffeomorphism groups (called
“symmetry groups” below):
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Symmetry groups

We have the following corresponding manifolds with their
respective multisymplectic diffeomorphism groups (called
“symmetry groups” below):

sum of volumes on R® = R3 x R3 with symmetry group
SDiff (R3) x SDiff (R3) up to exchange of factors; this group
acts 1-transitively but not 2-transitively
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Symmetry groups

We have the following corresponding manifolds with their
respective multisymplectic diffeomorphism groups (called
“symmetry groups” below):

sum of volumes on R® = R3 x R3 with symmetry group
SDiff (R3) x SDiff (R3) up to exchange of factors; this group
acts 1-transitively but not 2-transitively

canonical multisymplectic structure on R®, the total space of
the bundle A T*(R3) — R3, with symmetry group

QL ..o(R3) x Diff(R3) acting again 1-transitively but not
2-transitively
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Symmetry groups

We have the following corresponding manifolds with their
respective multisymplectic diffeomorphism groups (called
“symmetry groups” below):

sum of volumes on R® = R3 x R3 with symmetry group
SDiff (R3) x SDiff (R3) up to exchange of factors; this group
acts 1-transitively but not 2-transitively

canonical multisymplectic structure on R®, the total space of
the bundle A T*(R3) — R3, with symmetry group

QL ..o(R3) x Diff(R3) acting again 1-transitively but not
2-transitively

R® = C3 as a real manifold; the real part w of the complex
volume form dz! A dz? A dz3 on C3 is a 2-plectic form with

r-transitively acting symmetry group for all r.
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Symmetry groups

Let (G,w) be a real semi-simple Lie group with its canonical
three-form, given in the neutral element as follows:

we(§,m,¢) = B([¢,n), Q) for all §,n,¢ € g = TG

where B is the Killingform of g.

Then (G,w) has constant linear type but is flat if and only if its
dimension is three.

A multisymplectic manifold (M, w) is called “flat” if it has local
coordinates with the property that the multisymplectic form has
constant coefficients.
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Proof. Constancy of linear type follows immediately from the
bi-invariance of w. Without loss of generality, we can assume for
the rest of the proof, that G is connected and simple. In the
three-dimensional case the flatness is a consequence of the
Darboux theorem for volume forms. For all real simple Lie groups
of dimension higher than three, we have

Aut(g,we) = Aut(g, [-,-]) C Aut(g, (-,-)),

where the leftmost and rightmost terms are linear automorphisms
preserving the respective tensor and the middle term are the Lie
algebra automorphisms of g. The left equality is a standard fact of
Lie theory and the right inclusion follows, because the Killing form
is intrinsically defined from the Lie bracket.
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Let us assume that G admits a chart ¢ : U C G — V C g near e,
such that (Tz¢)*we = wg, Where we should be interpreted as the
constant coefficient extension of we € g = T.g. The natural
left-invariant pseudo-Riemannian metric on G is defined by

hg = —(9;)*(-, -), where 9{’& : T¢gG — g is the Maurer-Cartan
one-form. By construction we have

(Oé) o (qub)_1 € Aut(g, we).
So (05) o (Tgp) ™! preserves he = —(-,-), i.e.

(Tgd)*he = (Tgd)*((05) o (Tgd) 1) he = (05) he = hg

This means that ¢ is a flat chart for (G, h), where h is the
canonical left-invariant metric on G. Such a chart can not exist,
because real simple Lie groups with canonical left-invariant metric
have non-zero curvature.
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Multisymplectic and Hamiltonian actions
(M, w) k-plectic manifold and X vector field preserving w. A Lie
algebra homomorphism 7 : g — X(M,w), the w-preserving vector

fields, is called a “multisymplectic action”.

k = 1 : X Hamiltonian vector field iff X = X¢ with Xrow = —df.
Note: {f,g} = XroXgow is a Lie bracket!
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Multisymplectic and Hamiltonian actions
(M, w) k-plectic manifold and X vector field preserving w. A Lie
algebra homomorphism 7 : g — X(M,w), the w-preserving vector

fields, is called a “multisymplectic action”.

k = 1 : X Hamiltonian vector field iff X = X¢ with Xrow = —df.
Note: {f,g} = XroXgow is a Lie bracket!

A “co-moment” is a Lie algebra homomorphism A : g — Q%(M)
s.th.

Xy = 7(§) forall £ € g.
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k>1:Xy,n(Mw)={X=X,|Xqaw = —da}
The space of such forms « is noted Qﬁ;lm(l\/l,w) =: Lo.
Note: h(w, ) = {a, B} = Xq2Xgw is not a Lie bracket:

Jacobi identity holds up to d o 5(...)!
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k>1:Xy,n(Mw)={X=X,|Xqaw = —da}

The space of such forms « is noted Qﬁ;lm(l\/l,w) =: Lo.
Note: h(w, ) = {a, B} = Xq2Xgw is not a Lie bracket:
Jacobi identity holds up to d o 5(...)!

Barnich-Fulp-Lada-Stasheff. if M is contractible, given any acyclic
resolution of Ly there is a Lie co-structure on it. Here John Baez
and Christopher Rogers give it explicitely:

/1 = dde Rham and /n(al, ...,04,,) = iXalj...Xaan .
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Assume fi = X : g — QL (M, w) sth. Xy = 7(€) forall € € g.
Ham (©)

This is not good enough for a co-moment, since b is not a Lie
bracket and f; cannot be a morphism of Lie algebras!!!
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Assume i =\ : g — QII(-|_31m(M’w) sith. Xy) = 7(€) forall E € g.

This is not good enough for a co-moment, since b is not a Lie
bracket and f; cannot be a morphism of Lie algebras!!!

Wayout: complete f; to a Lie co-morphism: {fj};>1 with

fi i Ng — Q(m)

such that (fx41 = 0): for all j

Ofj + hfipn = —1f 1.
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Multisymy
Symmetr

Homotopy co-

What happens for kK = 27

fiig— Qy,(Mw), f:Ng—Q(M),

fulfilling
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What happens for kK = 27

fiig— Qy,(Mw), f:Ng—Q(M),

fulfilling
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I
Multis

What happens for kK = 27

fiig— Qy,(Mw), f:Ng—Q(M),

fulfilling

X)) = 7(8)
h(f(§), fi(n)) = A€, n]) + h(f(§ An))
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Homotopy

What happens for kK = 27

fiig— Qy,(Mw), f:Ng—Q(M),

fulfilling

X)) = 7(8)
h(f(§), fi(n)) = A€, n]) + h(f(§ An))
R ([€, nINCQ) —R([8, CIAn) + ([0, CIAE) = B(A(E), fi(n), A(())
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Theorem. (Callies-Frégier-Rogers-Zambon. resp. Ryvkin-W.)
There are cohomological classes governing existence and unicity of
a (homotopy) co-moment if an infinitesimal multisymplectic action
of a Lie algebra is given.
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Homotopy co-moment

d quantities

Definition. Let X be a vector field on M, then a differential form
v is called “conserved (under X)" if the Lie derivative Lx« is exact.

(Remark. This definition is motivated by Lagrangean field
theories!)
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Homotopy co-moment

ymplectic Noether type theorem

Theorem (L.Ryvkin-T.W.-M.Zambon). Let (M, w) be k-plectic,
H a k—1-form and Xy a vector field s.th. Xyiw = —dH, g a Lie
algebra acting with a co-moment on (M, w) and such that
LrgyH=0forall £ €g.
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Homotopy co-moment

ymplectic Noether type theorem

Theorem (L.Ryvkin-T.W.-M.Zambon). Let (M, w) be k-plectic,
H a k—1-form and Xy a vector field s.th. Xyiw = —dH, g a Lie
algebra acting with a co-moment on (M, w) and such that
LrgyH=0forall £ €g.

Then for all j > 1 and all p in ker(8;) C Mg, the (k—j)-form f;(p)
is conserved under Xy.
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