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(Time-dependant) classical mechanics on Q, an n-dimensional
configuration space, is geometrised on T ∗Q or T ∗I × T ∗Q for I a
time intervall and ψ : I → T ∗Q as follows:

Hamilton’s equations

∂H
∂qa (t, ψ(t)) = d(pa ◦ ψ(t))

dt ,
∂H
∂pa

(t, ψ(t)) = d(qa ◦ ψ(t))
dt .

Equivalently for Ψ = (idI ,H, ψ) : I → T ∗(I × Q):

(Ψ∗)
( d

dt
)
y ωΨ(t) = −dHΨ(t) with H = H−p.

Note: XHyω = −dH.

Tilmann Wurzbacher Symmetries in multisymplectic geometry



Classical field theory
Multisymplectic manifolds

Symmetry groups
Homotopy co-moment

References

(Time-dependant) classical mechanics on Q, an n-dimensional
configuration space, is geometrised on T ∗Q or T ∗I × T ∗Q for I a
time intervall and ψ : I → T ∗Q as follows:

Hamilton’s equations

∂H
∂qa (t, ψ(t)) = d(pa ◦ ψ(t))

dt ,
∂H
∂pa

(t, ψ(t)) = d(qa ◦ ψ(t))
dt .

Equivalently for Ψ = (idI ,H, ψ) : I → T ∗(I × Q):

(Ψ∗)
( d

dt
)
y ωΨ(t) = −dHΨ(t) with H = H−p.

Note: XHyω = −dH.
Tilmann Wurzbacher Symmetries in multisymplectic geometry



Classical field theory
Multisymplectic manifolds

Symmetry groups
Homotopy co-moment

References

Let Σ be a k-dimensional manifold with a volume form volΣ and a
dual k-vector field γΣ, and π : E = Σ× Q → Σ.

We call φ : Σ→ Q a “field” and L : J1(π)→ R a “Lagrange
function”.

Lagrangean field theory
Extrema of

φ 7→
∫

Σ
L(j1(φ)volΣ

are the solutions of the field theory, they fulfill the Euler-Lagrange
equations.
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If L is regular, the higher dimensional Legrendre transformation
yields equations on the analogues of T ∗(I × Q) and I × T ∗Q:

M(π) = ΛkT ∗Σ⊕ (T ∗Q ⊗ Λk−1T ∗Σ) resp.
P(π) = T ∗Q ⊗ Λk−1T ∗Σ,

both as vector bundles over E = Σ× Q for maps Ψ : Σ→M(π)
resp. Ψ̃ : Σ→ P(π).

Coordinates for M(π) are (xµ, qa, pµ
a , p); p being absent on P(π).

Tilmann Wurzbacher Symmetries in multisymplectic geometry



Classical field theory
Multisymplectic manifolds

Symmetry groups
Homotopy co-moment

References

Hamilton-Volterra equations

∀µ ∈ {1, ..., k} and ∀a ∈ {1, ..., n},

∂H
∂qa (Ψ̃(x)) =

n∑
µ=1

∂(pµ
a ◦ Ψ̃)(x)
∂xµ

,

− ∂H
∂pµ

a
(Ψ̃(x)) = ∂(qa ◦ Ψ̃)(x)

∂xµ
.

Time derivates are replaced by partials in coordinate directions xµ

of Σ, replacing I.
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With Ψ = (H, Ψ̃) : Σ→M(π) and H = H− p, we have
equivalently:

(Ψ∗)
(
γΣ) y ωΨ(t) = −dHΨ(t) with H = H−p.

We can now formulate for a multivector field XH on M(π) the

Hamilton-De Donder-Weyl (HDW) equations:

XHyω = −dH.

Solving them is not enough for finding the section Ψ or the field φ,
since if k > 1 going from HDW to a map is an extra step (that is
trivially assured by the existence of flows of vector fields, as
opposed to multivector fields)!
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Definition
A “multisymplectic” manifold (M, ω) is a pair, where M is a
manifold, k ≥ 1 and ω ∈ Ωk+1(M) is a closed differential form
satisfying the following non-degeneracy condition: The map

ι•ω : TM → ΛkT ∗M, v 7→ ιvω = vyω

is injective. For fixed degree k + 1 of the form such manifolds are
also called “k-plectic”.
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Examples galore

• symplectic (aka 1-plectic) manifolds

• multicotangent bundles ΛkT ∗E and certain subbundles
• dual jet bundles
• manifolds with volume forms
• real Calabi-Yau manifolds
• manifolds with G2-structures
• hyperkähler manifolds
• semisimple Lie groups with the Cartan three-form
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Note that for j > 1 typically the following map is neither injective
nor surjective:

ι•ω : ΛjTM → Λk+1−jT ∗M, u ∧ v 7→ (u ∧ v)yω .

Nevertheless the HDW equation

Xyω = −dα ,

whose solutions are couples (X , α) with X ∈ Xn−k(M), a
multivector field, and α ∈ Ωk(M), a k-form, are central for
multisymplectic geometry!
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The linear case
Note that there is only one GL(2n,R)-orbit of nondegenerate
2-forms on R2n. This is no longer true for higher degree!

Example: linear 2-plectic forms on R6

• sum of volumes on R6 = R3 × R3 with stabilizer group
isomorphic to SL(3,R)× SL(3,R)

• canonical multisymplectic structure on R6 = Λ2(R3)∗ ⊕ R3

and
ω(α⊕ u, β ⊕ v , γ ⊕ w) = α(v ,w)− β(u,w) + γ(u, v)

with a “parabolic stabilizer”
• R6 = C3 as a real vector space; the real part of a complex

volume form on C3 is a nondenerate 3-form with SL(3,C) as
stabilizer.
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The global case
We have the following corresponding manifolds with their
respective multisymplectic diffeomorphism groups (called
“symmetry groups” below):

• sum of volumes on R6 = R3 × R3 with symmetry group
SDiff (R3)× SDiff (R3) up to exchange of factors; this group
acts 1-transitively but not 2-transitively

• canonical multisymplectic structure on R6, the total space of
the bundle Λ2T ∗(R3)→ R3, with symmetry group
Ω1

closed (R3) o Diff (R3) acting again 1-transitively but not
2-transitively

• R6 = C3 as a real manifold; the real part ω of the complex
volume form dz1 ∧ dz2 ∧ dz3 on C3 is a 2-plectic form with
r -transitively acting symmetry group for all r .
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For Joachim

Theorem
Let (G , ω) be a real semi-simple Lie group with its canonical
three-form, given in the neutral element as follows:

ωe(ξ, η, ζ) = B([ξ, η], ζ) for all ξ, η, ζ ∈ g = TeG

where B is the Killingform of g.

Then (G , ω) has constant linear type but is flat if and only if its
dimension is three.

A multisymplectic manifold (M, ω) is called “flat” if it has local
coordinates with the property that the multisymplectic form has
constant coefficients.
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Proof. Constancy of linear type follows immediately from the
bi-invariance of ω. Without loss of generality, we can assume for
the rest of the proof, that G is connected and simple. In the
three-dimensional case the flatness is a consequence of the
Darboux theorem for volume forms. For all real simple Lie groups
of dimension higher than three, we have

Aut(g, ωe) = Aut(g, [·, ·]) ⊂ Aut(g, 〈·, ·〉),

where the leftmost and rightmost terms are linear automorphisms
preserving the respective tensor and the middle term are the Lie
algebra automorphisms of g. The left equality is a standard fact of
Lie theory and the right inclusion follows, because the Killing form
is intrinsically defined from the Lie bracket.
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Let us assume that G admits a chart φ : U ⊂ G → V ⊂ g near e,
such that (Tgφ)∗ωe = ωg , where ωe should be interpreted as the
constant coefficient extension of ωe ∈ g = Teg. The natural
left-invariant pseudo-Riemannian metric on G is defined by
hg = −(θL

g )∗〈·, ·〉, where θL
g : Tg G → g is the Maurer-Cartan

one-form. By construction we have

(θL
g ) ◦ (Tgφ)−1 ∈ Aut(g, ωe).

So (θL
g ) ◦ (Tgφ)−1 preserves he = −〈·, ·〉, i.e.

(Tgφ)∗he = (Tgφ)∗((θL
g ) ◦ (Tgφ)−1)∗he = (θL

g )∗he = hg

This means that φ is a flat chart for (G , h), where h is the
canonical left-invariant metric on G . Such a chart can not exist,
because real simple Lie groups with canonical left-invariant metric
have non-zero curvature.
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Multisymplectic and Hamiltonian actions

(M, ω) k-plectic manifold and X vector field preserving ω. A Lie
algebra homomorphism τ : g→ X(M, ω), the ω-preserving vector
fields, is called a “multisymplectic action”.

k = 1 : X Hamiltonian vector field iff X = Xf with Xf yω = −df .
Note: {f , g} = Xf yXgyω is a Lie bracket!

A “co-moment” is a Lie algebra homomorphism λ : g→ Ω0(M)
s.th.

Xλ(ξ) = τ(ξ) forall ξ ∈ g .
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k > 1 : XHam(M, ω) = {X = Xα |Xαyω = −dα}

The space of such forms α is noted Ωk−1
Ham(M, ω) =: L0.

Note: l2(α, β) = {α, β} = XαyXβyω is not a Lie bracket:

Jacobi identity holds up to d ◦ l3(...)!

Barnich-Fulp-Lada-Stasheff: if M is contractible, given any acyclic
resolution of L0 there is a Lie ∞-structure on it. Here John Baez
and Christopher Rogers give it explicitely:

l1 = dde Rham and ln(α1, ..., αn) = ±Xα1y...Xαnyω .
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Assume f1 = λ : g→ Ωk−1
Ham(M, ω) s.th. Xλ(ξ) = τ(ξ) forall ξ ∈ g .

This is not good enough for a co-moment, since l2 is not a Lie
bracket and f1 cannot be a morphism of Lie algebras!!!

Wayout: complete f1 to a Lie ∞-morphism: {fj}j≥1 with

fj : Λjg→ Ωk−j(M)

such that (fk+1 = 0): for all j

∂fj + l1fj+1 = −f ∗1 lj+1 .
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What happens for k = 2?

f1 : g→ Ω1
Ham(M, ω), f1 : Λ2g→ Ω0(M) ,

fulfilling

• Xλ(ξ) = τ(ξ)
• l2(f1(ξ), f1(η)) = f1([ξ, η]) + l1(f2(ξ ∧ η))
• f2([ξ, η]∧ζ)−f2([ξ, ζ]∧η)+f2([η, ζ]∧ξ) = l3(f1(ξ), f1(η), f1(ζ))
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Theorem. (Callies-Frégier-Rogers-Zambon. resp. Ryvkin-W.)
There are cohomological classes governing existence and unicity of
a (homotopy) co-moment if an infinitesimal multisymplectic action
of a Lie algebra is given.
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Conserved quantities

Definition. Let X be a vector field on M, then a differential form
α is called “conserved (under X )” if the Lie derivative LXα is exact.

(Remark. This definition is motivated by Lagrangean field
theories!)
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A multisymplectic Noether type theorem

Theorem (L.Ryvkin-T.W.-M.Zambon). Let (M, ω) be k-plectic,
H a k−1-form and XH a vector field s.th. XHyω = −dH, g a Lie
algebra acting with a co-moment on (M, ω) and such that
Lτ(ξ)H = 0 for all ξ ∈ g.

Then for all j ≥ 1 and all p in ker(δj) ⊂ Λjg, the (k−j)-form fj(p)
is conserved under XH .
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